\(\int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx\) [10]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 152 \[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=-\frac {(A-B) \operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right ) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}}-\frac {2 B \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}} \]

[Out]

-(A-B)*AppellF1(1/2,-n,1,3/2,1-sin(f*x+e),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(d*sin(f*x+e))^n/f/(sin(f*x+e)^n)/(a+
a*sin(f*x+e))^(1/2)-2*B*cos(f*x+e)*hypergeom([1/2, -n],[3/2],1-sin(f*x+e))*(d*sin(f*x+e))^n/f/(sin(f*x+e)^n)/(
a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3066, 2866, 2865, 2864, 129, 440, 2855, 69, 67} \[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=-\frac {(A-B) \cos (e+f x) \sin ^{-n}(e+f x) \operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right ) (d \sin (e+f x))^n}{f \sqrt {a \sin (e+f x)+a}}-\frac {2 B \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right )}{f \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[((d*Sin[e + f*x])^n*(A + B*Sin[e + f*x]))/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-(((A - B)*AppellF1[1/2, -n, 1, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x]*(d*Sin[e + f*x])^n)/
(f*Sin[e + f*x]^n*Sqrt[a + a*Sin[e + f*x]])) - (2*B*Cos[e + f*x]*Hypergeometric2F1[1/2, -n, 3/2, 1 - Sin[e + f
*x]]*(d*Sin[e + f*x])^n)/(f*Sin[e + f*x]^n*Sqrt[a + a*Sin[e + f*x]])

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 69

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[((-b)*(c/d))^IntPart[m]*((b*x)^FracPart[m]/(
(-d)*(x/c))^FracPart[m]), Int[((-d)*(x/c))^m*(c + d*x)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m]
 &&  !IntegerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-d/(b*c), 0]

Rule 129

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + b*(x^k/e))^m*(c + d*(x^k/e))^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 2855

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(c + d*x)^n/Sqrt[a - b*x]
, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ
[c^2 - d^2, 0] &&  !IntegerQ[2*n]

Rule 2864

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(-b)*(
d/b)^n*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a - x)^n*((2*a - x)^(m
 - 1/2)/Sqrt[x]), x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !
IntegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 2865

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(d/b)
^IntPart[n]*((d*Sin[e + f*x])^FracPart[n]/(b*Sin[e + f*x])^FracPart[n]), Int[(a + b*Sin[e + f*x])^m*(b*Sin[e +
 f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] && GtQ[a, 0] &&  !Gt
Q[d/b, 0]

Rule 2866

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Sin[e + f*x])^FracPart[m]/(1 + (b/a)*Sin[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Sin[e + f*x])^
m*(d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3066

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x
], x] + Dist[B/b, Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f,
A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = (A-B) \int \frac {(d \sin (e+f x))^n}{\sqrt {a+a \sin (e+f x)}} \, dx+\frac {B \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} \, dx}{a} \\ & = \frac {\left ((A-B) \sqrt {1+\sin (e+f x)}\right ) \int \frac {(d \sin (e+f x))^n}{\sqrt {1+\sin (e+f x)}} \, dx}{\sqrt {a+a \sin (e+f x)}}+\frac {(a B \cos (e+f x)) \text {Subst}\left (\int \frac {(d x)^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = \frac {\left ((A-B) \sin ^{-n}(e+f x) (d \sin (e+f x))^n \sqrt {1+\sin (e+f x)}\right ) \int \frac {\sin ^n(e+f x)}{\sqrt {1+\sin (e+f x)}} \, dx}{\sqrt {a+a \sin (e+f x)}}+\frac {\left (a B \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n\right ) \text {Subst}\left (\int \frac {x^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {2 B \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}}-\frac {\left ((A-B) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n\right ) \text {Subst}\left (\int \frac {(1-x)^n}{(2-x) \sqrt {x}} \, dx,x,1-\sin (e+f x)\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {2 B \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}}-\frac {\left (2 (A-B) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n\right ) \text {Subst}\left (\int \frac {\left (1-x^2\right )^n}{2-x^2} \, dx,x,\sqrt {1-\sin (e+f x)}\right )}{f \sqrt {1-\sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {(A-B) \operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},1-\sin (e+f x),\frac {1}{2} (1-\sin (e+f x))\right ) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}}-\frac {2 B \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 12.00 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.64 \[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {\cos (e+f x) \sin ^n(e+f x) (d \sin (e+f x))^n \left (-\sin ^2(e+f x)\right )^{-n} \sqrt {a (1+\sin (e+f x))} \left (1-\frac {1}{1+\sin (e+f x)}\right )^{-n} \left (4 (A-B) \operatorname {AppellF1}\left (-\frac {1}{2}-n,-\frac {1}{2},-n,\frac {1}{2}-n,\frac {2}{1+\sin (e+f x)},\frac {1}{1+\sin (e+f x)}\right ) (-\sin (e+f x))^n \sqrt {\frac {-1+\sin (e+f x)}{1+\sin (e+f x)}}-(A+B) (1+2 n) \operatorname {AppellF1}\left (1,\frac {1}{2},-n,2,\frac {1}{2} (1+\sin (e+f x)),1+\sin (e+f x)\right ) \sqrt {2-2 \sin (e+f x)} \left (1-\frac {1}{1+\sin (e+f x)}\right )^n\right )}{4 a f (1+2 n) (-1+\sin (e+f x))} \]

[In]

Integrate[((d*Sin[e + f*x])^n*(A + B*Sin[e + f*x]))/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Cos[e + f*x]*Sin[e + f*x]^n*(d*Sin[e + f*x])^n*Sqrt[a*(1 + Sin[e + f*x])]*(4*(A - B)*AppellF1[-1/2 - n, -1/2,
 -n, 1/2 - n, 2/(1 + Sin[e + f*x]), (1 + Sin[e + f*x])^(-1)]*(-Sin[e + f*x])^n*Sqrt[(-1 + Sin[e + f*x])/(1 + S
in[e + f*x])] - (A + B)*(1 + 2*n)*AppellF1[1, 1/2, -n, 2, (1 + Sin[e + f*x])/2, 1 + Sin[e + f*x]]*Sqrt[2 - 2*S
in[e + f*x]]*(1 - (1 + Sin[e + f*x])^(-1))^n))/(4*a*f*(1 + 2*n)*(-1 + Sin[e + f*x])*(-Sin[e + f*x]^2)^n*(1 - (
1 + Sin[e + f*x])^(-1))^n)

Maple [F]

\[\int \frac {\left (d \sin \left (f x +e \right )\right )^{n} \left (A +B \sin \left (f x +e \right )\right )}{\sqrt {a +a \sin \left (f x +e \right )}}d x\]

[In]

int((d*sin(f*x+e))^n*(A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x)

[Out]

int((d*sin(f*x+e))^n*(A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x)

Fricas [F]

\[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} \left (d \sin \left (f x + e\right )\right )^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((B*sin(f*x + e) + A)*(d*sin(f*x + e))^n/sqrt(a*sin(f*x + e) + a), x)

Sympy [F]

\[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {\left (d \sin {\left (e + f x \right )}\right )^{n} \left (A + B \sin {\left (e + f x \right )}\right )}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \]

[In]

integrate((d*sin(f*x+e))**n*(A+B*sin(f*x+e))/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral((d*sin(e + f*x))**n*(A + B*sin(e + f*x))/sqrt(a*(sin(e + f*x) + 1)), x)

Maxima [F]

\[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} \left (d \sin \left (f x + e\right )\right )^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(d*sin(f*x + e))^n/sqrt(a*sin(f*x + e) + a), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate((d*sin(f*x+e))^n*(A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(d \sin (e+f x))^n (A+B \sin (e+f x))}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {{\left (d\,\sin \left (e+f\,x\right )\right )}^n\,\left (A+B\,\sin \left (e+f\,x\right )\right )}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int(((d*sin(e + f*x))^n*(A + B*sin(e + f*x)))/(a + a*sin(e + f*x))^(1/2),x)

[Out]

int(((d*sin(e + f*x))^n*(A + B*sin(e + f*x)))/(a + a*sin(e + f*x))^(1/2), x)